Lab 3 – Decorating your rooms

Review

By now, you should have successfully compiled the program from Lab 1, and should be able to create a program based on your own map, using room descriptions from your imagination. Hopefully, you’ve also had the opportunity to begin playing the game The Plant, and making a map of the game as you play it. I will be handing out my own attempt at mapping The Plant so that you can compare my map with your own. If you have not yet finished playing The Plant, I urge you to continue playing it on your own time, or after you have completed your lab assignment.

Decorations

If you’ve played The Plant, you now realize that interactive fiction is more than just a bunch of rooms that you can walk around in. The rooms need to be filled with objects and characters to interact with. In today’s lab, you’ll learn how to add certain kinds of objects to your rooms.

The simplest kind of object to add is called a decoration. A decoration is an item in the game that you can “look at” or “examine”, but has no actual function in the game. Usually, a decoration is a way to provide more information to the player about something in the room description. Decorations are immovable and cannot be manipulated in any way, but they can be referred to and inspected.

Here is a sample transcript from a room containing a few decorations:

Fireplace

 You are standing in front of a brick fireplace. Above the fireplace is a dusty mantle.

>look at the brick fireplace

A warm fire crackles and glows in the fireplace.

>examine mantle

The mantle is covered with a thick layer of dust.

>look at dust

The dust has clearly been undisturbed for years.

>get dust

The dust isn't important.

Now let’s take a look at the lab3.t program for this room:

#include <adv.t>

#include <std.t>

startroom : room

 sdesc = "Fireplace"

 ldesc = "You are standing in front of a brick fireplace. Above the fireplace is a

 dusty mantle. "

;

fireplace : decoration

 location = startroom

 noun = 'fireplace' 'fire'

 adjective = 'brick'

 sdesc = "fireplace"

 ldesc = "A warm fire crackles and glows in the fireplace."

;

mantle : decoration

 location = startroom

 noun = 'mantle'

 adjective = 'dusty'

 sdesc = "mantle"

 ldesc = "The mantle is covered with a thick layer of dust."

;

dust : decoration

 location = startroom

 noun = 'dust'

 sdesc = "dust"

 ldesc = "The dust has clearly been undisturbed for years."

;

Okay, now that we’ve seen the whole program, let’s take a look at the fireplace line-by-line:

fireplace : decoration

Just like with rooms, every object must start with a one-word programming name which we’ll use to refer to the object throughout our program.

 location = startroom

This first property name is one you haven’t seen yet. location is used to describe where the item is located. The property value must be the programming name for one of the rooms in the program.

 noun = 'fireplace' 'fire'

This property is used to teach new vocabulary to the parser. List here all the nouns that the player might use to refer to this object. Each noun is enclosed in single quotes, not double quotes. This is very important; the single quotes tell the program that it is a vocabulary word, and not a message to print out to the user.

 adjective = 'brick'

This property also introduces new vocabulary words that the parser needs to be able to recognize. List here, enclosed in single quotes, all words that might be used as modifiers to describe the object. In other words, the noun and adjective properties together teach the computer to recognize all the following commands:

Look at fireplace.

Look at fire.

Look at brick fireplace.

Look at brick fire. (This last command doesn’t make much sense, but it’s good to know that the parser will still be able to figure out what the player means if this is typed in).

 sdesc = "fireplace"

Now we’re back to properties that you’ve seen before. Just like with the room objects, the sdesc is the “short description” of the object. This is the string that the program will use if it needs to print out information about the object (like “The fireplace is not important.”)

 ldesc = "A warm fire crackles and glows in the fireplace."

This is the “long description” of the object. This is the message that the player will see if he examines or looks at the object.

;

Every object is always terminated by a semicolon.

Reminder: All internal programming names are one word long, and are never enclosed in quotes. All vocabulary words are enclosed in single quotes. All messages that the user will see are enclosed in double quotes.

Readable objects

Let’s add a readable object to our program:

invitation : readable

 location = startroom

 noun = 'invitation'

 adjective = 'party'

 sdesc = "party invitation"

 ldesc = "You are cordially invited to attend a Halloween costume ball

 at the haunted mansion. The party starts at 8PM. RSVP."

;

Notice that this object is derived from the readable class (look after the colon on the first line). Readable objects can be picked up, looked at, and read. We don’t need to add the invitation to the room description because all takeable objects are automatically listed after the room description. Let’s compile the program and see how it looks when we run it:

Fireplace

 You are standing in front of a brick fireplace. Above the fireplace is a dusty mantle.

 You see a party invitation here.

>read invitation

You are cordially invited to attend a Halloween costume ball at the haunted mansion. The party starts at 8PM. RSVP.

>get invitation

Taken.

>inventory

You have a party invitation.

>look

Fireplace

 You are standing in front of a brick fireplace. Above the fireplace is a dusty mantle.

>drop invitation

Dropped.

>look

Fireplace

 You are standing in front of a brick fireplace. Above the fireplace is a dusty mantle.

 You see a party invitation here.

Overriding default property values

The built-in TADS classes define many default property values for you. Usually, these defaults work well and you don’t have to do anything to use them, but sometimes you may want to override the defaults to get more specialized behavior.

For example, the readable class defines a default property called readdesc, which is the message that the player gets when he reads the object. By default, readdesc is just a copy of ldesc, so the player gets the same message whether he types “look at” or “read”. But if you want the player to get a different message, just use a different readdesc message from the ldesc message.

As another example, most items in the game, including readable items, have a default property called adesc. By default, this property just stores a message which is the same as sdesc with “a “ stuck in front of it. So the party invitation, for example, has a default of:

adesc = “a party invitation”

This message is used to list the item properly when describing the room:

You see a party invitation here.

When you want the default, you don’t have to do anything, but there are certain item names that wouldn’t look right if you just stuck an “a “ in front.

Here is an example of a readable item that overrides the readdesc and ldesc properties for special behavior. Try adding this to your lab3.t:

photo : readable

 location = startroom

 noun = 'photo'

 adjective = 'autographed' 'autograph'

 sdesc = "autographed photo"

 adesc = "an autographed photo"

 ldesc = "This black and white photo of a snow-capped mountain appears

 to be autographed in the lower-right corner. Although the handwriting

 is messy, you could probably read the message if you tried."

 readdesc = "Reality is better than our best fantasies. -- Ansel

 Adams"

;

If you compile and run the program, you should get the following:

Fireplace

 You are standing in front of a brick fireplace. Above the fireplace is a dusty mantle.

 You see a party invitation and an autographed photo here.

>look at photo

This black and white photo of a snow-capped mountain appears to be autographed in the lower-right corner. Although the handwriting is messy, you could probably read the message if you tried.

>read photo

Reality is better than our best fantasies. -- Ansel Adams

Multiple Inheritance

When you create an item of a certain class we say that it inherits behavior from that class. It is possible to create an item that inherits behavior from more than one class.

For example, we’ve already discussed the readable class which defines default behavior for readable objects that can be picked up. There is also a class we haven’t discussed yet called fixeditem which defines default behavior for unmoveable objects. By combining the behavior of the two classes, we can get an object that is readable, but can’t be picked up.

calendar : fixeditem, readable

 location = startroom

 noun = 'calendar'

 adjective = 'wall'

 sdesc = "wall calendar"

 ldesc = "The calendar is turned to the month of December. All the

 Saturdays are circled in red."

;

Notice on the first line that both fixeditem and readable are listed, separated by a comma. This indicates that the calendar should get its behavior from both classes. Since the wall calendar can’t be picked up, it won’t automatically be listed after the room description. So we need to go back to the room description and add the calendar to the ldesc:

startroom : room

 sdesc = "Fireplace"

 ldesc = "You are standing in front of a brick fireplace. Above the

 fireplace is a dusty mantle. A wall calendar hangs over the mantle. "

;

Let’s compile and run the program:

Fireplace

 You are standing in front of a brick fireplace. Above the fireplace is a dusty mantle. A wall calendar hangs over the mantle.

 You see a party invitation and an autographed photo here.

>look at calendar

The calendar is turned to the month of December. All the Saturdays are circled in red.

>read calendar

The calendar is turned to the month of December. All the Saturdays are circled in red.

>get calendar

You can't have the wall calendar.

As you can imagine, mixing and matching different classes can be a powerful tool, but can result in very odd and confusing behavior if used improperly. For now, just be aware of this possibility, and with experience and experimentation you’ll gradually learn what classes can be safely combined.

Lab Assignment

Read and understand this handout. Feel free to type in lab3.t if it will help you learn and remember the concepts presented here. Once you feel you understand how to decorate your rooms, add decoration and readable items to the world you created in home1.t, or if you wish, start from scratch with new rooms and decorate accordingly. When you finish, you may continue playing The Plant.

PAGE
5

